Search results for " electron emission"

showing 10 items of 22 documents

ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting

2016

This work studies the photoelectrochemical behavior of novel ZnO/ZnS heterostructures obtained by means of anodization in water and glycerol/water/NH4F electrolytes with different Na2S additions under controlled hydrodynamic conditions. For this purpose different techniques such as Field Emission Scanning Electronic Microscopy (FE-SEM) with EDX, Raman spectroscopy and photoelectrochemical water splitting tests under standard AM 1.5 conditions have been carried out. The obtained results showed that the hydrodynamic conditions promoted an ordered nanotubular morphology which facilitates electron-hole separation and consequently, the photoelectrochemical activity for water splitting is enhance…

Materials scienceGeneral Chemical EngineeringInorganic chemistry02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakeZINCRAMAN-SPECTROSCOPYANODIZATIONTIO2 NANOTUBESHydrogen productionAnodizingELECTROLYTESPHOTOCATALYTIC ACTIVITYHeterojunctionGeneral Chemistry021001 nanoscience & nanotechnologyHYDRODYNAMIC CONDITIONSEVOLUTION0104 chemical sciencesARRAYSElectroquímicaField electron emissionsymbolsWater splitting0210 nano-technologyRaman spectroscopySENSITIZED ZNODark current
researchProduct

Electron Emission of Pt: Experimental Study and Comparison With Models in the Multipactor Energy Range

2016

Experimental data of secondary emission yield (SEY) and electron emission spectra of Pt under electron irradiation for normal incidence and primary energies lower than 1 keV are presented. Several relevant magnitudes, as total SEY, elastic backscattering probability, secondary emission spectrum, and backscattering coefficient, are given for different primary energies. These magnitudes are compared with theoretical or semiempirical formulas commonly used in the related literature.

Secondary electron emissionBackscatterAstrophysics::High Energy Astrophysical PhenomenaCleaningElectronSecondary emission yield (SEY01 natural sciencesElectrostatic measurements010305 fluids & plasmasBackscattering coefficientBackscatterEnergy measurementElectron emission0103 physical sciencesElectron beam effectsTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEmission spectrumElectrical and Electronic EngineeringElastic backscattering probabilityElectron emission spectraMultipactor energy rangePlatinum010302 applied physicsRange (particle radiation)ChemistrySecondary emission yield (SEY)Secondary emission spectrum (SES)PtElectron irradiationCurrent measurementElectronic Optical and Magnetic MaterialsElectron backscatteringSecondary emission yieldSecondary emissionYield (chemistry)Backscattered electronsDistortion measurementAtomic physicsEnergy (signal processing)Multipactor
researchProduct

Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

2018

[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.

010302 applied physicsMultipactor effectNuclear and High Energy PhysicsWaveguide (electromagnetism)Materials scienceDielectricCondensed Matter Physics01 natural sciencesSecondary electrons010305 fluids & plasmasCharacterization (materials science)Computational physicsSecondary electron emission (SEE)Secondary emission0103 physical sciencesRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEquivalent circuitMultipactor effectSecondary electron yield
researchProduct

Electron beam induced optical and electronical properties of SiO 2

2000

Abstract Ionizing radiation in dielectric and optically transparent silica as well as thin SiO 2 layers produces defect luminescence as well as charge storage. A comparison of different excitation–relaxation processes like cathodoluminescence, charge injection and trapping, secondary electron field emission, and exoelectron emission leads to a generally similar excitation dose behaviour described by an electron beam saturation dose of 0.01–0.1 C/cm 2 . This suggests a correlation of these four electron excitation mechanisms likely related to the same kind of defect in glassy SiO 2 , the 2-fold-coordinated silicon Si: centre with typical electronic singlet–singlet and singlet–triplet transit…

Materials scienceSiliconMechanical Engineeringchemistry.chemical_elementCathodoluminescenceCondensed Matter PhysicsSecondary electronsField electron emissionchemistryMechanics of MaterialsElectron excitationSecondary emissionGeneral Materials ScienceAtomic physicsLuminescenceExoelectron emissionMaterials Science and Engineering: B
researchProduct

Carbon nanotube bags: catalytic formation, physical properties, two-dimensional alignment and geometric structuring of densely filled carbon tubes.

2001

The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (A…

NanotubeNanostructureChemistryOrganic ChemistryChemiechemistry.chemical_elementNanotechnologyGeneral ChemistryCarbon nanotubeCatalysislaw.inventionsymbols.namesakeField electron emissionChemical engineeringTransmission electron microscopylawsymbolsCarbon nanotube supported catalystRaman spectroscopyCarbonChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

The positioning system of the ANTARES Neutrino Telescope

2012

The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…

Positioning systemDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Detector modelling and simulations II (electric fieldsDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesTiming detectorshardwareDetector alignment and calibration methods010303 astronomy & astrophysicsInstrumentationDETECTOR ALIGMENTMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSOUND[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Orientation (computer vision)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsTriangulation (computer vision)particle-beams)GeodesyDETECTOR CONTROL SYSTEMDetector modelling and simulations II (electric fields charge transport multiplication and induction pulse formation electron emission etc)Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)sources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pulse formationarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2DETECTOR MODELLING AND SIMULATIONSDetector modelling and simulations IIalgorithmsPhysics::Geophysics0103 physical sciences14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationetc)multiplication and inductionBuoyDetector control systems010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsMooringcharge transport[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Detector alignment and calibration methods (laserselectron emissionFISICA APLICADAdetector modelling and simulations ii (electric fields; antares neutrino telescope; multiplication and induction; charge transport; pulse formation; electron emission; etc); hardware; architecture; timing detectors; detector control systems (detector and experiment monitoring and slow-control systems; algorithms; databases); sources; detector alignment; calibration.; acoustic positioning; detector alignment and calibration methods (lasers; particle-beams)
researchProduct

Cathodoluminescence characterization of ZnO/ZnS nanostructures anodized under hydrodynamic conditions

2018

[EN] ZnO/ZnS nanostructures were successfully synthesized by a simple electrochemical anodization of zinc in a glycerol based electrolyte containing sulfide-ammonium fluoride. The influence of different hydrodynamic conditions and anodization potentials during anodization on the morphological and electronic properties of the obtained ZnO/ZnS nanostructures was studied. The anodized samples were characterized using confocal Raman microscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electronic Microscopy (FE-SEM), cathodoluminescence (CL), and photoelectrochemical water splitting tests under standard AM 1.5 conditions. The results showed that hydrodynamic conditions and higher potenti…

Materials scienceCathodoluminescenceGeneral Chemical EngineeringCathodoluminescenceZnO/ZnS nanostructure02 engineering and technology010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakeMicroscopyElectrochemistryWater splittingPhotocurrentNanoestructuresAnodizingPhotocatalyst021001 nanoscience & nanotechnology0104 chemical sciencesElectroquímicaField electron emissionChemical engineeringsymbolsPhotocatalysisWater splittingAnodization0210 nano-technologyRaman spectroscopy
researchProduct

Synergistic effect between hydrodynamic conditions during Ti anodization and acidic treatment on the photoelectric properties of TiO2 nanotubes

2015

In the present work, the combined influence of controlled hydrodynamic conditions during Ti anodization and the acidic treatment with HClO4 on the photoelectric properties of mixed anatase/rutile TiO2 nanotubes has been studied. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FE-SEM), Confocal Raman Microscopy, electrochemical measurements (electrochemical impedance spectroscopy and Mott-Schottky analysis) and photoelectrochemical measurements. It has been observed that the use of hydrodynamic conditions increases the surface area of nanotubes, while acidic treatment enhances their conductivity. Besides, there is a clear synergistic effect between t…

PhotocurrentAnataseAnodizingChemistryHidrodinàmicaAnalytical chemistryConductivityCatalysisINGENIERIA QUIMICADielectric spectroscopyHydrodynamic conditionsElectroquímicaField electron emissionsymbols.namesakeChemical engineeringRutilesymbolsTiO2 nanotubesMott-Schottky analysisElectrochemical impedance spectroscopy (EIS)Physical and Theoretical ChemistryPhotocatalysisRaman spectroscopy
researchProduct

Nano-graphite cold cathodes for electric solar wind sail

2015

The nanographite (NG) films consisting of tiny graphite crystallites (nanowalls) are produced by carbon condensation from methane–hydrogen gas mixture activated by a direct current discharge. High aspect ratio and structural features of the NG crystallites provides efficient field electron emission (FE). Applicability and performance of the NG films in an electron gun (E-gun) of a solar wind thruster system with an electric sail (E-sail) is tested. The long-term tests are demonstrated suitability of E-gun assembly with the NG cathodes for the real space missions. The results of the tests are analyzed and physical mechanisms of the cathode aging and practical methods for improvement performa…

nanographite filmsMaterials scienceta114ta221Analytical chemistrychemistry.chemical_elementsolar wind thruster systemGeneral ChemistryCathodelaw.inventionField electron emissionchemistrylawGeneral Materials ScienceElectric sailDirect-current dischargeCrystalliteGraphiteComposite materialCarbonElectron gunCarbon
researchProduct

Asymmetric tungsten oxide nanobrushes via oriented attachment and Ostwald ripening

2011

Tungsten oxide nanobrushes were synthesized using a solvothermal approach that lead to self-branching in the presence of citric acid and hexadecylamine as surfactants. Our synthetic approach yielded branched nanorods of tungsten oxide in a single synthetic step. Based on our results, we propose a phenomenological pathway for the formation, branching, and assembly of these tungsten oxide brushes. The formation of tungsten oxide brushes proceeds by thermal decomposition of ammonium tungstate in the presence of citric acid and hexadecylamine. The pale blue powder obtained after solvothermal reaction was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolu…

Ostwald ripeningNanostructureMaterials scienceThermal decompositionInorganic chemistryGeneral Chemistryequipment and suppliesCondensed Matter Physicschemistry.chemical_compoundsymbols.namesakeField electron emissionTungstatechemistryTransmission electron microscopysymbolsGeneral Materials ScienceNanorodHigh-resolution transmission electron microscopy
researchProduct